On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments

نویسندگان

  • Naoto Kunitomo
  • Yukitoshi Matsushita
چکیده

We compare four different estimation methods for the coefficients of a linear structural equation with instrumental variables. As the classical methods we consider the limited information maximum likelihood (LIML) estimator and the two-stage least squares (TSLS) estimator, and as the semi-parametric estimation methods we consider the maximum empirical likelihood (MEL) estimator and the generalized method of moments (GMM) (or the estimating equation) estimator. Tables and figures of the distribution functions of four estimators are given for enough values of the parameters to cover most models of interest for linear models and we include some heteroscedastic cases and nonlinear cases. We have found that the LIML estimator has good performance in terms of the bounded loss functions and probabilities when the number of instruments is large, that is, the microeconometric models with ”many instruments” in the terminology of recent econometric literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND Moment Restriction-based Econometric Methods: An Overview

Moment restriction-based econometric modelling is a broad class which includes the parametric, semiparametric and nonparametric approaches. Moments and conditional moments themselves are nonparametric quantities. If a model is specified in part up to some finite dimensional parameters, this will provide semiparametric estimates or tests. If we use the score to construct moment restrictions to e...

متن کامل

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

An Optimal Modification of the LIML Estimation for Many Instruments and Persistent Heteroscedasticity

We consider the estimation of coefficients of a structural equation with many instrumental variables in a simultaneous equation system. It is mathematically equivalent to an estimating equation estimation or a reduced rank regression in the statistical linear models when the number of restrictions or the dimension increases with the sample size. As a semi-parametric method, we propose a class o...

متن کامل

Asymptotic expansions and higher order properties of semi-parametric estimators in a system of simultaneous equations

Asymptotic expansions are made for the distributions of the Maximum Empirical Likelihood (MEL) estimator and the Estimating Equation (EE) estimator (or the Generalized Method of Moments (GMM) in econometrics) for the coefficients of a single structural equation in a system of linear simultaneous equations, which corresponds to a reduced rank regression model. The expansions in terms of the samp...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008